Gradient Dissent: Conversations on AI
En podcast av Lukas Biewald
120 Avsnitt
-
Polly Fordyce — Microfluidic Platforms and Machine Learning
Publicerades: 2021-04-29 -
Adrien Gaidon — Advancing ML Research in Autonomous Vehicles
Publicerades: 2021-04-22 -
Nimrod Shabtay — Deployment and Monitoring at Nanit
Publicerades: 2021-04-15 -
Chris Mattmann — ML Applications on Earth, Mars, and Beyond
Publicerades: 2021-04-08 -
Vladlen Koltun — The Power of Simulation and Abstraction
Publicerades: 2021-04-01 -
Dominik Moritz — Building Intuitive Data Visualization Tools
Publicerades: 2021-03-25 -
Cade Metz — The Stories Behind the Rise of AI
Publicerades: 2021-03-18 -
Dave Selinger — AI and the Next Generation of Security Systems
Publicerades: 2021-03-11 -
Tim & Heinrich — Democraticizing Reinforcement Learning Research
Publicerades: 2021-03-04 -
Daphne Koller — Digital Biology and the Next Epoch of Science
Publicerades: 2021-02-18 -
Piero Molino — The Secret Behind Building Successful Open Source Projects
Publicerades: 2021-02-11 -
Rosanne Liu — Conducting Fundamental ML Research as a Nonprofit
Publicerades: 2021-02-05 -
Sean Gourley — NLP, National Defense, and Establishing Ground Truth
Publicerades: 2021-01-28 -
Peter Wang — Anaconda, Python, and Scientific Computing
Publicerades: 2021-01-22 -
Chris Anderson — Robocars, Drones, and WIRED Magazine
Publicerades: 2021-01-14 -
Adrien Treuille — Building Blazingly Fast Tools That People Love
Publicerades: 2020-12-04 -
Peter Norvig – Singularity Is in the Eye of the Beholder
Publicerades: 2020-11-20 -
Robert Nishihara — The State of Distributed Computing in ML
Publicerades: 2020-11-13 -
Ines & Sofie — Building Industrial-Strength NLP Pipelines
Publicerades: 2020-10-29 -
Daeil Kim — The Unreasonable Effectiveness of Synthetic Data
Publicerades: 2020-10-16
Join Lukas Biewald on Gradient Dissent, an AI-focused podcast brought to you by Weights & Biases. Dive into fascinating conversations with industry giants from NVIDIA, Meta, Google, Lyft, OpenAI, and more. Explore the cutting-edge of AI and learn the intricacies of bringing models into production.