120 Avsnitt

  1. Kathryn Hume — Financial Models, ML, and 17th-Century Philosophy

    Publicerades: 2021-12-16
  2. Sean & Greg — Biology and ML for Drug Discovery

    Publicerades: 2021-12-02
  3. Chris, Shawn, and Lukas — The Weights & Biases Journey

    Publicerades: 2021-11-05
  4. Pete Warden — Practical Applications of TinyML

    Publicerades: 2021-10-21
  5. Pieter Abbeel — Robotics, Startups, and Robotics Startups

    Publicerades: 2021-10-07
  6. Chris Albon — ML Models and Infrastructure at Wikimedia

    Publicerades: 2021-09-23
  7. Emily M. Bender — Language Models and Linguistics

    Publicerades: 2021-09-09
  8. Jeff Hammerbacher — From data science to biomedicine

    Publicerades: 2021-08-26
  9. Josh Bloom — The Link Between Astronomy and ML

    Publicerades: 2021-08-20
  10. Xavier Amatriain — Building AI-powered Primary Care

    Publicerades: 2021-07-30
  11. Spence Green — Enterprise-scale Machine Translation

    Publicerades: 2021-07-16
  12. Roger & DJ — The Rise of Big Data and CA's COVID-19 Response

    Publicerades: 2021-07-08
  13. Amelia & Filip — How Pandora Deploys ML Models into Production

    Publicerades: 2021-07-01
  14. Luis Ceze — Accelerating Machine Learning Systems

    Publicerades: 2021-06-24
  15. Matthew Davis — Bringing Genetic Insights to Everyone

    Publicerades: 2021-06-17
  16. Clément Delangue — The Power of the Open Source Community

    Publicerades: 2021-06-10
  17. Wojciech Zaremba — What Could Make AI Conscious?

    Publicerades: 2021-06-03
  18. Phil Brown — How IPUs are Advancing Machine Intelligence

    Publicerades: 2021-05-27
  19. Alyssa Simpson Rochwerger — Responsible ML in the Real World

    Publicerades: 2021-05-20
  20. Sean Taylor — Business Decision Problems

    Publicerades: 2021-05-13

4 / 6

Join Lukas Biewald on Gradient Dissent, an AI-focused podcast brought to you by Weights & Biases. Dive into fascinating conversations with industry giants from NVIDIA, Meta, Google, Lyft, OpenAI, and more. Explore the cutting-edge of AI and learn the intricacies of bringing models into production.

Visit the podcast's native language site