Machine Learning Street Talk (MLST)
En podcast av Machine Learning Street Talk (MLST)
217 Avsnitt
-
#56 - Dr. Walid Saba, Gadi Singer, Prof. J. Mark Bishop (Panel discussion)
Publicerades: 2021-07-08 -
#55 Self-Supervised Vision Models (Dr. Ishan Misra - FAIR).
Publicerades: 2021-06-21 -
#54 Gary Marcus and Luis Lamb - Neurosymbolic models
Publicerades: 2021-06-04 -
#53 Quantum Natural Language Processing - Prof. Bob Coecke (Oxford)
Publicerades: 2021-05-19 -
#52 - Unadversarial Examples (Hadi Salman, MIT)
Publicerades: 2021-05-01 -
#51 Francois Chollet - Intelligence and Generalisation
Publicerades: 2021-04-16 -
#50 Christian Szegedy - Formal Reasoning, Program Synthesis
Publicerades: 2021-04-04 -
#49 - Meta-Gradients in RL - Dr. Tom Zahavy (DeepMind)
Publicerades: 2021-03-23 -
#48 Machine Learning Security - Andy Smith
Publicerades: 2021-03-16 -
047 Interpretable Machine Learning - Christoph Molnar
Publicerades: 2021-03-14 -
#046 The Great ML Stagnation (Mark Saroufim and Dr. Mathew Salvaris)
Publicerades: 2021-03-06 -
#045 Microsoft's Platform for Reinforcement Learning (Bonsai)
Publicerades: 2021-02-28 -
#044 - Data-efficient Image Transformers (Hugo Touvron)
Publicerades: 2021-02-25 -
#043 Prof J. Mark Bishop - Artificial Intelligence Is Stupid and Causal Reasoning won't fix it.
Publicerades: 2021-02-19 -
#042 - Pedro Domingos - Ethics and Cancel Culture
Publicerades: 2021-02-11 -
#041 - Biologically Plausible Neural Networks - Dr. Simon Stringer
Publicerades: 2021-02-03 -
#040 - Adversarial Examples (Dr. Nicholas Carlini, Dr. Wieland Brendel, Florian Tramèr)
Publicerades: 2021-01-31 -
#039 - Lena Voita - NLP
Publicerades: 2021-01-23 -
#038 - Professor Kenneth Stanley - Why Greatness Cannot Be Planned
Publicerades: 2021-01-20 -
#037 - Tour De Bayesian with Connor Tann
Publicerades: 2021-01-11
Welcome! We engage in fascinating discussions with pre-eminent figures in the AI field. Our flagship show covers current affairs in AI, cognitive science, neuroscience and philosophy of mind with in-depth analysis. Our approach is unrivalled in terms of scope and rigour – we believe in intellectual diversity in AI, and we touch on all of the main ideas in the field with the hype surgically removed. MLST is run by Tim Scarfe, Ph.D (https://www.linkedin.com/in/ecsquizor/) and features regular appearances from MIT Doctor of Philosophy Keith Duggar (https://www.linkedin.com/in/dr-keith-duggar/).