Linear Digressions

En podcast av Ben Jaffe and Katie Malone

Kategorier:

289 Avsnitt

  1. Google Flu Trends

    Publicerades: 2018-03-26
  2. How to pick projects for a professional data science team

    Publicerades: 2018-03-19
  3. Autoencoders

    Publicerades: 2018-03-12
  4. When Private Data Isn't Private Anymore

    Publicerades: 2018-03-05
  5. What makes a machine learning algorithm "superhuman"?

    Publicerades: 2018-02-26
  6. Open Data and Open Science

    Publicerades: 2018-02-19
  7. Defining the quality of a machine learning production system

    Publicerades: 2018-02-12
  8. Auto-generating websites with deep learning

    Publicerades: 2018-02-04
  9. The Case for Learned Index Structures, Part 2: Hash Maps and Bloom Filters

    Publicerades: 2018-01-29
  10. The Case for Learned Index Structures, Part 1: B-Trees

    Publicerades: 2018-01-22
  11. Challenges with Using Machine Learning to Classify Chest X-Rays

    Publicerades: 2018-01-15
  12. The Fourier Transform

    Publicerades: 2018-01-08
  13. Statistics of Beer

    Publicerades: 2018-01-02
  14. Re - Release: Random Kanye

    Publicerades: 2017-12-24
  15. Debiasing Word Embeddings

    Publicerades: 2017-12-18
  16. The Kernel Trick and Support Vector Machines

    Publicerades: 2017-12-11
  17. Maximal Margin Classifiers

    Publicerades: 2017-12-04
  18. Re - Release: The Cocktail Party Problem

    Publicerades: 2017-11-27
  19. Clustering with DBSCAN

    Publicerades: 2017-11-20
  20. The Kaggle Survey on Data Science

    Publicerades: 2017-11-13

7 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site