Linear Digressions

En podcast av Ben Jaffe and Katie Malone

Kategorier:

289 Avsnitt

  1. Interview with Joel Grus

    Publicerades: 2019-06-10
  2. Re - Release: Factorization Machines

    Publicerades: 2019-06-03
  3. Re-release: Auto-generating websites with deep learning

    Publicerades: 2019-05-27
  4. Advice to those trying to get a first job in data science

    Publicerades: 2019-05-19
  5. Re - Release: Machine Learning Technical Debt

    Publicerades: 2019-05-12
  6. Estimating Software Projects, and Why It's Hard

    Publicerades: 2019-05-05
  7. The Black Hole Algorithm

    Publicerades: 2019-04-29
  8. Structure in AI

    Publicerades: 2019-04-21
  9. The Great Data Science Specialist vs. Generalist Debate

    Publicerades: 2019-04-15
  10. Google X, and Taking Risks the Smart Way

    Publicerades: 2019-04-08
  11. Statistical Significance in Hypothesis Testing

    Publicerades: 2019-04-01
  12. The Language Model Too Dangerous to Release

    Publicerades: 2019-03-25
  13. The cathedral and the bazaar

    Publicerades: 2019-03-17
  14. AlphaStar

    Publicerades: 2019-03-11
  15. Are machine learning engineers the new data scientists?

    Publicerades: 2019-03-04
  16. Interview with Alex Radovic, particle physicist turned machine learning researcher

    Publicerades: 2019-02-25
  17. K Nearest Neighbors

    Publicerades: 2019-02-17
  18. Not every deep learning paper is great. Is that a problem?

    Publicerades: 2019-02-11
  19. The Assumptions of Ordinary Least Squares

    Publicerades: 2019-02-03
  20. Quantile Regression

    Publicerades: 2019-01-28

4 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site