Data Skeptic
En podcast av Kyle Polich
592 Avsnitt
-
[MINI] AdaBoost
Publicerades: 2016-11-04 -
Stealing Models from the Cloud
Publicerades: 2016-10-28 -
[MINI] Calculating Feature Importance
Publicerades: 2016-10-21 -
NYC Bike Share Rebalancing
Publicerades: 2016-10-14 -
[MINI] Random Forest
Publicerades: 2016-10-07 -
Election Predictions
Publicerades: 2016-09-30 -
[MINI] F1 Score
Publicerades: 2016-09-23 -
Urban Congestion
Publicerades: 2016-09-16 -
[MINI] Heteroskedasticity
Publicerades: 2016-09-09 -
Music21
Publicerades: 2016-09-02 -
[MINI] Paxos
Publicerades: 2016-08-26 -
Trusting Machine Learning Models with LIME
Publicerades: 2016-08-19 -
[MINI] ANOVA
Publicerades: 2016-08-12 -
Machine Learning on Images with Noisy Human-centric Labels
Publicerades: 2016-08-05 -
[MINI] Survival Analysis
Publicerades: 2016-07-29 -
Predictive Models on Random Data
Publicerades: 2016-07-22 -
[MINI] Receiver Operating Characteristic (ROC) Curve
Publicerades: 2016-07-15 -
Multiple Comparisons and Conversion Optimization
Publicerades: 2016-07-08 -
[MINI] Leakage
Publicerades: 2016-07-01 -
Predictive Policing
Publicerades: 2016-06-24
The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.
