Best AI papers explained
En podcast av Enoch H. Kang
547 Avsnitt
-
When can in-context learning generalize out of task distribution?
Publicerades: 2025-10-16 -
The Art of Scaling Reinforcement Learning Compute for LLMs
Publicerades: 2025-10-16 -
A small number of samples can poison LLMs of any size
Publicerades: 2025-10-16 -
Dual Goal Representations
Publicerades: 2025-10-14 -
Welcome to the Era of Experience
Publicerades: 2025-10-14 -
Value Flows: Flow-Based Distributional Reinforcement Learning
Publicerades: 2025-10-14 -
Self-Adapting Language Models
Publicerades: 2025-10-12 -
The Markovian Thinker
Publicerades: 2025-10-12 -
Moloch’s Bargain: emergent misalignment when LLMs compete for audiences
Publicerades: 2025-10-12 -
Transformer Predictor Dynamics and Task Diversity
Publicerades: 2025-10-11 -
Base models know how to reason, thinking models learn when
Publicerades: 2025-10-11 -
Spectrum tuning: Post-training for distributional coverage and in-context steerability
Publicerades: 2025-10-11 -
Understanding Prompt Tuning and In-Context Learning via Meta-Learning
Publicerades: 2025-10-11 -
MLPs Learn In-Context on Regression and Classification tasks
Publicerades: 2025-10-11 -
Is Pre-Training Truly Better than Meta-Learning?
Publicerades: 2025-10-11 -
Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Publicerades: 2025-10-11 -
Do LLMs Recognize Your Preferences? Evaluating Personalized Preference Following in LLMs
Publicerades: 2025-10-09 -
Learning dynamics of LLM finetuning
Publicerades: 2025-10-09 -
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF
Publicerades: 2025-10-09 -
OpenAI Agent Builder and n8n: Orchestrating Reasoning Versus Automating Process
Publicerades: 2025-10-08
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
