Best AI papers explained
En podcast av Enoch H. Kang
550 Avsnitt
-
Bayesian Concept Bottlenecks with LLM Priors
Publicerades: 2025-05-15 -
In-Context Parametric Inference: Point or Distribution Estimators?
Publicerades: 2025-05-15 -
Enough Coin Flips Can Make LLMs Act Bayesian
Publicerades: 2025-05-15 -
Bayesian Scaling Laws for In-Context Learning
Publicerades: 2025-05-15 -
Posterior Mean Matching Generative Modeling
Publicerades: 2025-05-15 -
Can Generative AI Solve Your In-Context Learning Problem? A Martingale Perspective
Publicerades: 2025-05-15 -
Dynamic Search for Inference-Time Alignment in Diffusion Models
Publicerades: 2025-05-15 -
Is In-Context Learning in Large Language Models Bayesian? A Martingale Perspective
Publicerades: 2025-05-12 -
Leaked Claude Sonnet 3.7 System Instruction tuning
Publicerades: 2025-05-12 -
Converging Predictions with Shared Information
Publicerades: 2025-05-11 -
Test-Time Alignment Via Hypothesis Reweighting
Publicerades: 2025-05-11 -
Rethinking Diverse Human Preference Learning through Principal Component Analysis
Publicerades: 2025-05-11 -
Active Statistical Inference
Publicerades: 2025-05-10 -
Data Mixture Optimization: A Multi-fidelity Multi-scale Bayesian Framework
Publicerades: 2025-05-10 -
AI-Powered Bayesian Inference
Publicerades: 2025-05-10 -
Can Unconfident LLM Annotations Be Used for Confident Conclusions?
Publicerades: 2025-05-09 -
Predictions as Surrogates: Revisiting Surrogate Outcomes in the Age of AI
Publicerades: 2025-05-09 -
Learn then Test: Calibrating Predictive Algorithms to Achieve Risk Control
Publicerades: 2025-05-09 -
How to Evaluate Reward Models for RLHF
Publicerades: 2025-05-09 -
LLMs as Judges: Survey of Evaluation Methods
Publicerades: 2025-05-09
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
