Best AI papers explained
En podcast av Enoch H. Kang
550 Avsnitt
-
Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing
Publicerades: 2025-11-27 -
Prompted Policy Search: Reinforcement Learning through Linguistic and Numerical Reasoning in LLMs
Publicerades: 2025-11-27 -
Ilya Sutskever – We're moving from the age of scaling to the age of research
Publicerades: 2025-11-26 -
Cognitive Foundations for Reasoning and Their Manifestation in LLMs
Publicerades: 2025-11-26 -
Natural emergent misalignment from reward hacking in production RL
Publicerades: 2025-11-25 -
Evolution Strategies at the Hyperscale
Publicerades: 2025-11-25 -
The Path Not Taken: RLVR Provably Learns Off the Principals
Publicerades: 2025-11-23 -
Back to Basics: Let Denoising Generative Models Denoise
Publicerades: 2025-11-23 -
LLM Prompt Duel Optimizer: Efficient Label-Free Prompt Optimization
Publicerades: 2025-11-22 -
Black-Box On-Policy Distillation of Large Language Models
Publicerades: 2025-11-20 -
Solving a million step LLM task with zero errors
Publicerades: 2025-11-20 -
Not All Thoughts Matter: Selective Attention for Efficient Reasoning
Publicerades: 2025-11-19 -
Sample-Efficient Parametric Learning from Natural Language
Publicerades: 2025-11-19 -
Bayesian Optimization in Language space: An Eval-Efficient AI Self-Improvement Framework
Publicerades: 2025-11-18 -
Context Engineering: Sessions, Memory
Publicerades: 2025-11-16 -
The Era of Agentic Organization: Learning to Organize with Language Models
Publicerades: 2025-11-15 -
Understanding neural networks through sparse circuits
Publicerades: 2025-11-14 -
Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning
Publicerades: 2025-11-14 -
Multi-Agent Evolve: LLM Self-Improvement Through Co-Evolution
Publicerades: 2025-11-14 -
LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Publicerades: 2025-11-14
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
