Best AI papers explained
En podcast av Enoch H. Kang
544 Avsnitt
-
The Path Not Taken: RLVR Provably Learns Off the Principals
Publicerades: 2025-11-23 -
Back to Basics: Let Denoising Generative Models Denoise
Publicerades: 2025-11-23 -
LLM Prompt Duel Optimizer: Efficient Label-Free Prompt Optimization
Publicerades: 2025-11-22 -
Black-Box On-Policy Distillation of Large Language Models
Publicerades: 2025-11-20 -
Solving a million step LLM task with zero errors
Publicerades: 2025-11-20 -
Not All Thoughts Matter: Selective Attention for Efficient Reasoning
Publicerades: 2025-11-19 -
Sample-Efficient Parametric Learning from Natural Language
Publicerades: 2025-11-19 -
Bayesian Optimization in Language space: An Eval-Efficient AI Self-Improvement Framework
Publicerades: 2025-11-18 -
Context Engineering: Sessions, Memory
Publicerades: 2025-11-16 -
The Era of Agentic Organization: Learning to Organize with Language Models
Publicerades: 2025-11-15 -
Understanding neural networks through sparse circuits
Publicerades: 2025-11-14 -
Supervised Reinforcement Learning: From Expert Trajectories to Step-wise Reasoning
Publicerades: 2025-11-14 -
Multi-Agent Evolve: LLM Self-Improvement Through Co-Evolution
Publicerades: 2025-11-14 -
LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Publicerades: 2025-11-14 -
PREFDISCO: Evaluating Proactive Personalization through Interactive Preference Discovery
Publicerades: 2025-11-12 -
Reusing pre-training data at test time is a compute multiplier
Publicerades: 2025-11-10 -
Scaling Agent Learning via Experience Synthesis
Publicerades: 2025-11-09 -
Continuous Autoregressive Language Models
Publicerades: 2025-11-08 -
Toward a Theory of Agents as Tool-Use Decision-Makers
Publicerades: 2025-11-07 -
Nested Learning: The Illusion of Deep Learning Architectures
Publicerades: 2025-11-05
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
